

October, 2007 1

UUDDPP//IIPP 110000 MMbbiitt TTrraannssmmiitttteerr//RReecceeiivveerr
- High Speed Communication Core

October, 2007 Product Specification

Prevas AB
Box 4, Visit: Klockartorpsgatan 14
S – 721 03 Vasteras
Sweden

Email: stefan.sjoholm@prevas.se
Phone: +46 (0)21 – 360 19 00
Fax: +46 (0)21 – 360 19 29
URL: www.prevas.se

Features
• Send and receive UDP-packets (User Datagram

Protocol) over Ethernet

• Send and receive broadcast messages

• Full duplex

• Replies to echo ping-requests

• ARP-table with 4 entries

• Check incoming/outgoing packets against CRC
errors

• Checks UDP checksum on received packet

• Send 256 byte wide packets

• Programmable IP/MAC address

• Supports transfer rates at 10/100 Mbit/s

• Fully synchronous implementation, which uses
block- RAM for storage

• Compatible with standard Ethernet transceivers
and MII (Media Independent Interface)

Applications
The core is suitable for implementing high-speed
communication with one or more PC:s or other
udp_ip cores when a UART or parallel port is not fast
enough. It is also highly suitable for sending large
amount of data (210 byte) in one packet.

General Description
The UDP/IP core sends and receives Ethernet
packets to a 10/100Mbit transceiver.

CORE Facts

Provided with Core
Documentation User’s Reference Manual
Design File Formats EDIF netlist;

VHDL Source RTL (available at
extra cost)

Constraints Files Udp_ip.ucf
Verification VHDL test bench
Instantiation templates VHDL
Reference designs &
application notes

UDP-packet loopback program,
with PC-interface

Additional Items None
Simulation Tool Used

Modelsim v 6.0
Support

Support provided by [Prevas AB]

The core has a unique MAC-address (Media Access
Control) and an IP-address (Internet Protocol) that

can be changed at any time.

The main purpose of the core is to transfer UDP-
packets to one or more target on a LAN-network
(Local Area Network).

When UDP packets are sent to the core’s IP-address,
it will be received and stored in RAM. Status flags are
then activated to signal to the application layer that a
new packet has been received. A received packet
with faulty CRC or with a packet size larger than 256
bytes will not be processed. Check of incoming UDP
checksum can be enabled through a generic
constant. The core can also be configured to reject
packets that are larger than a specified length.

New UDP-packets to be transmitted is written to the
UDP/IP core RAM memory. When the application
layer has finished writing data it will activate the send
request flag and the packet will be transmitted to the
target. If the TX UDP-packet IP-address is not in the
ARP table, an automatic ARP-request (Address
Resolution Protocol) will be sent to get the MAC-
address.

The core will respond to ARP requests that are
targeted to the
core’s IP-address.

Family Example
Device

Fmax
(MHz)

Slices IOB GCLK Design
Tools

Spartan-IIE XC2S300E-6 60 1065 200 3 ISE 6.3i

Table 1: Example Implementation Statistics

Product Specifiation UDP/IP Transmitter/Receiver

October, 2007 2

The purpose of this packet is for other Ethernet nodes
to get the core MAC-address.

The IP-core will also send ARP-requests by itself
either manually or automatically. The core sends two
ARP-requests with 1 sec of timeout delay each before
an ARP-response timeout occur.

ICMP (Internet Control Message Protocol) echo reply
messages from other PC:s running in an windows
environment, will be responded with an echo reply
message.

The ARP-table has four entries. It will store IP
addresses together with MAC addresses.

Functional Description
As shown above and explained below, the UDP/IP
core includes six major blocks: Receiver, Transmitter,
CRC checker, CRC generator, packet interpreter and
packet composer. Above that, the memory blocks and
ARP-table is included. These blocks are also
described below.

Receiver
This block handles the incoming messages. Data
arrives in nibble-packets. It gradually stores the
message in RX-RAM. A message larger than 256
bytes will be rejected. A message that doesn’t match
the core or the broadcast MAC address will not be
stored.

CRC Checker
32 bit CRC is calculated on incoming packets. If it
doesn’t match with the received CRC, the packet is
thrown away and the CRC error flag is set.

Packet Interpreter
This block looks at certain fields in the received
packet and decides if it is a supported packet or not.
If it is a supported packet the block initiates the
sending of a response packet. If it is an UDP-packet it
will flag to the application that a new UDP-packet has
arrived.

The IP/MAC address will be saved in the ARP-table
when the core receives an ARP-response message.

Packet Composer
From here packets are put together. Four types of
packets can be sent:

• ARP-requests

• ARP-responses

• ICMP echo-replies

• UDPs

Depening one which packet that is to be sent,
different actions are taken. Parts of each message is
read from a ROM and copied to TX-RAM. After that,
other packet components like ip/mac-addresses,
checksums, lengths, identifier etc are added to the
message. UDP messages will be put together when
the UDP transmit request signal has been set from
the superior application layer.

Transmitter
This block reads data from TX-RAM, puts out the
transmit packet to the nibble-wide databus and sets
control signals. At the beginning, 16 nibbles of
preamble are sent, where the last one is a start-of-
frame nibble. At the end of each packet 4 bytes of
CRC checksum is sent.

CRC Generator
While the packet is sent, CRC is calculated, one byte
at a time. It uses the CRC32 polynomial for Ethernet.
The polynomial looks like this:

x^32 + x^26 + x^23 + x^22 + x^16 + x^12 + x^11 +
x^10 + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + 1.

RAM/ROM
The base of all messages is stored in a block ROM.

Two block-RAMs are also included. Each block-RAM
is 512*8 bits wide. The RX-RAM stores the incoming
message and the TX-RAM holds the transmit
message.

Figure 1: UDP/IP Core Block Diagaram

UDP/IP Core

Product Specifiation UDP/IP Transmitter/Receiver

October, 2007 3

ARP-table
The ARP-table stores IP/MAC addresses. There are
four entries in the table. This means the core can
send UDP packets to four different targets without
doing any extra ARP-requests. The table works a
FIFO. The oldest data in the table will be replaced
when a new entry is needed.

Core Modifications
The size of the UDP-packet can be extended. Echo
request/reply functionality can be excluded. Other
types of packets can be supported. CRC 32 checking
on incoming packets can be omitted

Core Assumptions
The UDP/IP core is following the Ethernet and IP
standard but has the following simplifications:

• Packets bigger than 256 bytes will not be
received.

• The core will not work for 1Gbit Ethernet.

• Min packet length is 64 bytes, therefore
shorter packets will be padded with extra
bytes at the end.

• ICMP echo-reply messages will not be
checked for correct ICMP checksum.

• The IP header checksum will not be
checked.

• On ICMP echo-replies, IP header identifier
field will not be increased.

ICMP echo-reply messages will always contain 32
byte data. The data payload will start on hex 61 and
increase to hex 77, then it start over again at hex 61
and goes up to hex 69. These numbers represent
ascii values starting with a, b, c…
Verification Methods

The UDP/IP core’s functionality has been extensively
tested with a testbench and a large number of test
patterns. It has also been implemented on a Xilinx
Spartan 2 with a Broadcom transceiver, where the
communication with several PC:s has been verified.

Design Services
Prevas also offers core integration, core
customisation and other design services.

Ordering Information
This product is available from Prevas, under terms of
the SignOnce IP License. See www.prevas.se for
pricing or contact Prevas for additional information
about this product.

Prevas AB
Box 4, Visit: Klockartorpsgatan 14
S – 721 03 Vasteras
Sweden

Email: stefan.sjoholm@prevas.se
Phone: +46 (0)21 – 360 19 00
Fax: +46 (0)21 – 360 19 29
URL: www.prevas.se

Prevas cores are purchased under a Licence
Agreement, copies of which are available on request.
Prevas AB retains the right to make changes to these
specifications at any time, without notice. All
trademarks, registered trademarks, or servicemarks
are the property of their respective owners.

Related Information

Xilinx Programmable Logic
For information on Xilinx programmable logic or
development system software, contact your local
Xilinx sales office, or:

Xilinx, Inc. 2100 Logic Drive
San Jose, CA 95124
Phone:+1 408-559-7778
URL: www.xilinx.com

Product Specifiation UDP/IP Transmitter/Receiver

October, 2007 4

UDP/IP I/O Signals
The signal names of the UDP core are shown in Table 2.

Signal Direction Description
reset_n Input Master Reset (Asynchronous)

phy_reset_n Output Transceiver master reset

rxdata(3:0) Input Transceiver receiver databus

rx_clk Input Receiver master clock from transceiver

rx_dv Input Receiver data valid strobe from transceiver

tx_clk Input Transmitter master clock from transceiver

txdata(3:0) Input Transceiver transmitter databus

tx_en Output Transmit data enable to transceiver

tx_er Output Transmit error line

rx_crc_mismatch Output Activated when a CRC error detected on RX

led Output Toggles for every new UDP-packet rec.

udp_pkt_rec Output new UDP packet received

udp_pkt_acq Input packet received acknowledge

udp_data_rec(7:0) Output Databus for RX-RAM

udp_data_tra(7:0) Input Databus for TX-RAM

udp_addr_rec(7:0) Input Addressbus for RX-RAM memory

udp_addr_tra(7:0) Input Addressbus for TX-RAM memory

ram_wr_str Input TX-RAM write strobe

udp_tra_req Input UDP transmit request

udp_tra_acq Output UDP transmit acknowledge

udp_length(7:0) Input UDP transmit packet length

arp_send_req Input Manual ARP req inititaing

arp_send_ack Output Manual ARP req ack

target_ip_address_1(7:0) Input Target IP address 1

target_ip_address_2(7:0) Input Target IP address 2

target_ip_address_3(7:0) Input Target IP address 3

target_ip_address_4(7:0) Input Target IP address 4

core_ip_address_1(7:0) Input UDP_IP core IP address 1

core_ip_address_2(7:0) Input UDP_IP core IP address 2

core_ip_address_3(7:0) Input UDP_IP core IP address 3

core_ip_address_4(7:0) Input UDP_IP core IP address 4

core_mac_address_1(7:0) Input UDP_IP core MAC address 1

core_mac_address_2(7:0) Input UDP_IP core MAC address 2

core_mac_address_3(7:0) Input UDP_IP core MAC address 3

core_mac_address_4(7:0) Input UDP_IP core MAC address 4

core_mac_address_5(7:0) Input UDP_IP core MAC address 5

core_port_1(7:0) Input UDP_IP core port address part 1

core_port_2(7:0) Input UDP_IP core port address part 2

target_port_1(7.0) Input UDP message target port part 1

target_port_2(7:0) Input UDP message target port part 2

incorrect_udp_length Output Set max UDP packet length error flag (option)

incorrect_udp_chksum Output Incorrect UDP checksum error flag (option)

arp_req_timeout Output ARP response timeout error flag

arp_req_resp_ack Output ARP response received

Table 2: UDP/IP I/O Signals

